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PREFACE 

The work presented herein was conducted by the Arnold Engineering Development 
Center (AEDC), Air Force Systems Command (AFSC), under Program Element 65807F. 
The Air Force project manager was Mr. Elton Thompson (AEDC/DOTR). The results 
presented were obtained by ARO, Inc., AEDC Division (a Sverdrup Corporation 
Company), operating contractor for the AEDC, AFSC, Arnold Air Force Station, 
Tennessee, under ARO Project Numbers P32A-C2A and P33A-KOA. Analysis of the 

results was completed in June 1977, and the manuscript (ARO Control No. 
ARO-PWT-TR-77-64) was submitted for publication on September 30, 1977. 
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1.0 INTRODUCTION 

Unsteady transonic flow over bodies has been treated with linear differential equations 

for high reduced frequencies with major interest in flutter analysis (Ref. 1). Since the 

frequency range of interest is the low frequency range, where the linearized equation breaks 

down, the nonlinear equation must be used. For slender bodies of revolution with a sharp 

nose, several investigators have developed approximate methods to solve the transonic small 

disturbance equation (Refs. 2 through 4). For blunt-nose bodies of revolution, these 

aforementioned methods are not applicable. In engineering applications, a method that 

can be applied to both blunt and pointed bodies of revolution is most desirable, and 

such a method is developed in this report. 

The method to be described is based on the numerical method developed by South 

and Jameson (Ref. 5), who solved the steady full potential equation for axisymmetrical 

flow over blunt and pointed bodies of revolution at transonic speeds. Their method shows 
good agreement with other theoretical methods and experiments at steady state (Ref. 6). 
Thus, an extension of South and Jameson's scheme to calculate unsteady transonic flow 

has been pursued. 

The unsteady motion under consideration is assumed to be a small amplitude harmonic 
osciUation; therefore, the flow may be divided into steady and unsteady components, with 
the latter as a perturbation of the former. The fundamental equations for the steady and 
unsteady parts were derived by using a body-normal coordinate system and are shown 

to be both elliptic and hyperbolic equations depending on the local steady flow Mach 
number. The numerical method of a rotated difference scheme developed in Ref. 5 was 

used in solving both the steady (computer program RAXBOD) and unsteady flow fields. 
Pulsatile and pitching oscillations were considered. Examples of the calculated results are 

given for both blunt and pointed bodies of revolution for quasi-steady and unsteady flow 

conditions. 

2.0 ANALYSIS 

2.1 BASIC EQUATIONS 

The success of using a body-normal coordinate system with rotated difference scheme 
in predicting surface pressures of blunt and pointed bodies of revolution in steady transonic 
flow (Refs. 5 and 6) prompts one to use the same approach for the calculation of unsteady 
surface pressure. The unsteady potential equation for an irrotational compressible fluid 

(Ref. 7) is 

5 
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, a2&__ +_2  fi' . aft'___ v2~ _ _z ~' .[~fi' • V) fi"] (1) 
a 2 at 2 a 2 at a 2 

where ¢ is the velocity potential, ~ is the velocity vector, a is the speed of  sound, t 

is the time, and V and V2 are respectively the divergent and Laplace operators. If  Eq. 

(1) is applied to a body-normal coordinate system (Fig. 1) for a body of  revolution at 
zero incidence, one obtains 

+ 

I 1 a 2 ~  2 Iu a2~ +v a2~ +w a2~] 
,,2 ".at--~- + -~  " a ,a I ;  a,a~g T ata---;,'~ 

= (1 - . . .~ . )1 ~ ( 1  a~ _ (1 V 2 
"~s) - a2)  a2c;6 

HrWU as Ka2~ ) + (2UVK _ si (~) ] c;gd) + IK (1 _ U2 ) ~  a-'~-~H + H" a'-~-'s a -~" 

+ ~ + cosO +-~ ~2 " a~ (2) 

where 

U = cos0 + _I . acb (3a) 
H as 

V = -s in  0 + 0._~ (3b) 
an 

W = 1 a¢ (3c) 

For flows about a body of  revolution undergoing the small amplitude oscillation considered 
here, a cos ~ variation of  the flow quantities in the ~ direction is assumed. It is also 

assumed that  the solution can be expanded into a steady and an unsteady component  
(Ref. 4); i.e., 

6 
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~ X  -Z 

.de n H-I 
Z - f c 0 s  e ds - n sin 8 

r [] f s i n  0 ds + n cos e 

Figure 1. Body-normal coordinate system. 

, = &o, Cs,.) + [~! (s,n)cos ,~ e ikt] R.P. (4a) 

U = [Jo + (U1 cos,~ eikt) R ( 4 b )  
. P ,  

V = V o + (e l  cos ~, eikt~'R.P. (4C) 

P = Po + (Pl c o s ~  eikt)R.p. ( 4 d )  

where k is the reduced frequency of  the oscillation, R.P. signifies the real part o f  a complex 

quanti ty,  and the subscripts 0 and I represent the quant i ty  for steady and first-order 

perturbat ion flow, respectively. By substi tuting Eqs. (4a through d) into Eq. (2) and 

collecting terms o f  the same order, one obtains the zeroth-order equat ion for ~o as follows: 

( I  - U2 ) o  I (~. a~o~ _ 2U Vo_ o a2~o ( +  1 - V2 ) a 2 ~ o o  
.-2 IT ~s T s  ~ } a2H OsOn a ''~- On 2 

o o o 

[ ] + I -  ~ + + 2 KUoV sin0 1 0t~o o + - o ( 5 )  
a2 o Ha 2 T H t~s 

U o = c o s 0  + ] O~o H as (6a) 

V o = - s in  0 + a~b° ( 6 b )  
On 
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The first-order equation for ~l is 

_ k 2 t ~ l  + 2,___~k [ U o  ad~] + V a ~ l q  
' .2 ° . a ,  o - ~ - j  

( ) . (  ) ( ,;,)0,,, = l - U2o ! ] 0'~1 + I - ....9 _ C ~I - 

+ :~ O&~ + B&bl 
H Os On 

2UoV o ozd>l 
a2H OsOn 

(7) 

where 

A - 2L'oVo ~ sin___.00_ 2Uo O 
a2oH r a2oH as  

(, 0~o)_ ,.(O=~o~ Vo 
as \ a s a .  / 

.(, ,o)~,Vo., ,°o (~) 
H Os a2tl H a 2 

o o 

(o ' - )  (O~o~ B = K l - o + c o s 0 _  2Vo 
l-i" ~ 7 ~ \ 0 . 2  } - 

o o 

(8a) 

2,~ ( l ~ )  2U° (a2~°~  + ~ (8b) 
• a2 ~ O s O n /  a2S 

UI - I 0.~1 (9a) 
II as  

V1 _ O~l (9b) 
011 

The quantity C equals 0 or 1, depending on the type of flow under consideration. 
For axisymmetrical oscillatory flow such as the pulsatile oscillation, ~1 is independent 
of 4; therefore, cos ~ should be replaced by unity in Eq. (4), and the term (l/r2 ~1) 
should be eliminated from Eq. (7); that is, C = 0. For a pitching oscillation, C = 1. 
Since Eq. (7) is a complex equation, ~1 is a complex function and 

~1 = q~IB (s ,n)  ~- i~ i  i ( s ,n)  (10) 

Consequently, Ut, VI, and P1 are all complex functions. 

8 
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2.2 BOUNDARY CONDITIONS 

The boundary condition is applied by requiring that the velocity vector be tangential 

to the surface, or 

D....~W = D_~ + UOi + V@._~. = 0 (11) 
Dt  Ot Os On 

= n -  n I (s,t) (12) 

and 

Thus, the zeroth-order steady part boundary condition is 

V - d~b° - s i n 0  = 0 
o an  

(13) 

and the first-order unsteady part boundary condition is 

_ _  o 0~1  On 1 _  U 0nl + _ _  = O (14) 
at H as an 

Also, at infinity (n ~ -), the velocity potential is required to vanish; that is, ~o -~ 0 

and ~1 ~ 0. 

2.3 PRESSURE COEFFICIENTS 

The pressure coefficients may be obtained by applying a perturbation approach to 

the unsteady Bernoulli equation, as follows: 
y 

Po = t + ~ M~[(1 - Uo ~ - V~o)] ,-'-i (15) 
p 

pl po u o a¢ _ _  = - _ _  -I- 1 + V o 
P= P= \ Ot H 0 s  / (16) 

and 

Cp = Cpo + ACpl (17a) 

= + iACpl (17b) ACpx C P I B  I 

where 

9 
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= Po-P. _ 2 (Po - 1) (17c) Cpo ~ u2 r.~. 2 p-~ 
~P. - 

and 

ACpza ± p  u~ yM2 - \ p  / (17d) 
2 

_ _ 2 { P " I  
aCp~, iD2 . u ~,.x]~ \ P.  (17e) 

3.0 COMPUTATIONAL SCHEME 

T h e  numerical method employed for the solution of the steady and unsteady flow 
fields is the same as that described in Ref. 5. In fact, the computer program RAXBOD 
developed by South at NASA Langley Research Center was used to solve the steady 
components, Eqs. (5)and (13). Figure 2 shows the transformation from the physical plane 
to the computational plane. 'The unsteady components are given by Eqs. (7) and (14). 
It should be noted that Eq. (7) retains the same transonic flow characteristics of a 
mixed-type, elliptic/hyperbolic differential equation, depending on whether the local 
steady flow is subsonic or supersonic. Hence, the scheme given in Ref. 5 was applied 
to solve Eqs. (7) and (14). However, since Eqs. (7) and (14) are linear, the finite difference 
equations obtained are a set of linear algebraic equations and can be solved by a direct 
matrix ,inversion instead of a relaxation method, which was used in the solution of the 

steady "flow field (Ref. 5). 

B~y " t l l l l l l l l l  I I 1 
| | | l d . |  | | I | I I 

- ~ I I I 1 . 1 . 1  l I 0 , , , , , , ' , : ,  : : , Physical Mesh 
0 ~ Smax 
Computational Mesh 

Figure 2. Transformation from physical to computational plane. 

10 
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The details of  the application of the rotated difference scheme and the relaxation 

method for solving the steady flow field may be found in Ref. 5 and will not be repeated 

herein. The implementation of the rotated difference scheme to the perturbed flow, Eq. 

(7), and the boundary condition, Eq. (14), as well as the system of algebraic equations, 

is given in this section. 

3.1 D I F F E R E N C E  E Q U A T I O N S  

To begin with, a simple case of a uniform cylindrical afterbody will be considered. 

Here, the sheared coordinates as described in Ref. 5 need not be used. When one applies 

the rotated difference scheme as described in Ref. 5, Eq. (7) is rewritten as follows: 

- q2°~ .~ 1 i - ~ l l l  + C4 I °1.~111 , C 5 0 ~ I R  
1 ~ /  " s s  N~ iT " a., ' , 

C6 I 0.4'~1 + CT&kl + C s 6 0 (18a) 
II O s  O---~- . I R  = 

where 

(2) 
_ q,~ + d ]  + C 4 ] C~IT - C 5 0~11 

l ~ ~IIss INN II as an 

I a,6~n _ C7 d¢'~a - C 6  H as oln + C8 '6 l I  = 0 (18b)  

~ ' " ss  q=o L "  a.~ i i - - ~ - ,  / . " a, an - ~ o  an= j (19a) 

and 

- I a d¢IR 2UoVo 192@lR + Vo 2 
- ~ a .  a ,  - H a , a .  a . =  j ( 1 9 b )  ~IRNN qo 

C 4 = A, C s = B, C 6 - 2kUo C 7 - 2kYo and C8 = k 2 _ C 
a2  ' a 2 ' a-~ r"-~ ( 1 9 c )  

o o o 

Similar equations may be written for ~lls  S and ~1 INN" Now, the elliptic or hyperbolic 
nature o f  Eqs. (18a) and (18b) is determined by whether the local value of  (1 - qo2/a o2) 

11 
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is positive or negative, respectively. Thus, for all terms in Eq. (19a), if (1 - qoZ/ao z) > 
0, the central difference should be used, and if (1 - q2o/ao z) < 0, the upwind difference 
should be used. Furthermore, the upwind quadrant is determined by the sign of the local 
Vo component as shown in Fig. 3. The corresponding different forms for terms in Eqs. 
(18a) and (18b) at the grid point (i, j) are expressed in Appendix A, and the final difference 
equations are given as follows: 

For ~ss 
Supersonic Points: 

j ~ , 

j + l  

j+ 

i , j  

i - 2  i - 1  i 

I fV  > 0  

Subsonic Points: 

j -1  : 

i 

j + l  

i -1 

j - 2  

j - ;  
j : i , "  

i - 2  i - 1  i 

If V <  0 

i, j 

i+1 

Also for ~ NN 

Figure 3. The neighboring points used in the difference scheme.  

For a subsonic point 

(~I + al)~IRi_l, j_ I + [(~6 + a6 - C~) ¢~IR - C6~II ]  i_l,j 

+ (~7 + a7)¢'~n~_~,,+~ + [(/32 + "2 ~- c~)~]R + c~ ,6~i]~ ~_~ 

+ (/85 + a5 + C8)q61R.. + [(~8 + a8 - C~)¢IR -C~ q~iI ] 
x,j  i , j + l  

+ (~3 + aS)(~IRi+1,j._l - [(P4 -r a 4 + C~)(~IR + C ~ ] i ] i + l  j 

+ (t99 - a g ) @ I B  = 0 
i+ l  , j + l  (20) 

12 
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For a supersonic point and V > 0 

Y! d)lll " rZl .6111 " [(a6 + )'2 - C,~) .~IR - C66111 
t - - 2 , j  t - - I  , .I--I t - - I  . I  

* (a7 + Y4 ) 6111 + [(a2 ~" (':5).6111 + C 7 6 1 1 ]  
t - - I  , l t - I  

+ (a s  + )'3 + C8) 6 ~ .  + [ (as  + )'5 - C~) . ~ l .  - 
I,J 

i- )/6 .~I | |  "! [(a4 + C.~)¢~I|I - C~ .611 
I , J + 2  l+ 1 ,J 

t , l - - I  

C7 .6111 
t , j - r  I 

. a9~b lR  = 0 (21) 
t + l  , J + l  

For a supersonic point and V __< 0 

Y] '~]]| t--2.l -I- (Ct I - y.~) ,~ l [ | i _ l , j _ l  + [(a6 + )'2 - C4) '~ lR 

- c~  411] - a." 6 1 .  + y~ 41R.  
l - - l , J  I - - I  , ] - - I  I ,J--2 

+ [(a2 - )'5 * c~  + ~ 3 ; . 6 , .  + c( .6111  
t , I - - I  

+ [(a 5 - y~ ~- C 8 + a.  I + C ~ ) ~ ] l  t - C~ .61 i ]  
l , I  

+ I ( "8-  c~  + a 9 ) -  c ; . ~ ]  ,+1 = 0 (22) 

Similar equations can be written for ~1 ] by switching ~1 R and ~11 and changing the sign 
for C~ and C~ in Eqs. (20) through (22); thus these equations will not be repeated 

herein. 

Special treatment is required for the perturbed flow ~1 along the axis, as was the 
case for the steady part ~o. For axisymmetric unsteady flow such as a pulsatile oscillation, 

for example, s ~ 0, 

U o -. O, r -. llos -. O, 0 -~ -~, a~o -, 0 ( 2 3 a )  
2 a s  

a n d  

U 1 -, 0 (23b) 

13 
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Equation (18) reduces to 

) ( v 2 )  0 2~  [ 0 2 ~ b l n  1 - o n 
2 + 

o o 

2kV O~bll (k~2o) + B04~I~ + o + 4~11~ = 0 (24a) 
On a 2 an 

o 

( 0-'~'-} a2'~lI~ + ( 1 -  ~o )v2o 0241] ~. B 0 6 1 1 _  2kVo O61R - (k~2o) 0n a 2 0n ~blI = 0 (24b) 
o 

where 

B = 2k _ 2Vo /a26o'~ 
HZ 2 j  

Equation (24) should be used along the axis, or i = 1. If the perturbed flow is not 
axisymmetric, as in the case of pitching or heaving oscillations, then because of the 
assumption that ~1 is antisymmetrical with respect to ~ (i.e., Ot ,x, cos ~b), ~1 R and 
~1] must be zero along the axis. 

Again, the upwind difference should be applied to the second term in Eqs. (24) 
when (I -V2o/a 2) < 0 and the central difference should be used when (I - U2/a 2) > 0. 
For other terms, the central difference should be used. Hence, at each grid point, two 
algebraic equations are obtained for 01R and 01I, and these two equations are coupled 
through the terms with coefficient C~ and C~. For points involving boundaries, such as 
the body surface, the axis of symmetry, and infinity, the proper boundary condition 
should be imposed (to be discussed later). Hence, the total number of Mgebraic equations 
to be solved simultaneously will be 2 x (I - I) x (J - I), where I and J are the maximum 
grid index along the s and n directions, respectively. 

3.2 BOUNDARY CONDITIONS 

The surface boundary condition, Eq. (14), may be rewritten as follows: 

O'~IR = ~U° . anlm (25a) 
On H as 

0411 _ k n 1 (25b) 
0n 

where nl is given by the motion of the body and will be described later. In difference 
form, Eqs. (~25a) and (25b) become 

14 
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61lli,J+l = - - 611| i,J-I (26a) 

= _ 2A~ (knl) + .~l (26b) 
~ l l i . j +  1 g--~- l i . j _  1 

Equations (26a) and (26b) will be used to replace all terms at J+l. 

The expressions for nl for three oscillatory motions which have engineering 
applications are now described. 

(1) Pulsatile oscillation with the amplitude proportional to the local radius: 

n] = 80 (r cos0) (27a) 

an-'-"kl = go (K r sin 0 + H cos 0 sin 0) (27b) 

(2) Pitching oscillation with amplitude to: 

n i = r ° ( d  t - Z )  c o s  0 (28a) 

O n l  - o c)s r (d t -Z) K sin 0- cos20 (28b) 

where dt is the pitch center. 

(3) Heaving oscillation with amplitude ho" 

n I = h o cos 0 (29a) 

0nl -- h o K sin 0 (29b) 
0s 

The boundary condition at infinity is ~I R = ~II = 0 or all values of ~1 R and ~bli 

at j = I arc zero. 

The boundary condition at the axis for axisymmetric flow becomes 

~1r~+1, J .~lRi_l. j (30a) 

~ll÷l. j = ~lli_l, J (30b) 

15 
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#t 

For nonaxisymmetric flow, one obtains 

= .61l ! and .61R = 0 dl  n , + t  .. , - 1 . ,  , , i  (31a) 

= - ¢ ~ I I  and ~ l l  = 0 (31b) ~ l I  :+l .] : - I  ,j i,j 

because of  the cos ~, variation of  the flow in the crossflow plane. The set of linear algebraic 

equations was solved by the method of  factorization. 

4.0 RESULTS AND DISCUSSION 

4.1 GENERAL REMARKS 

A computer  program to solve for the perturbed flow field was coded for an IBM 

370-165 computer. The computational procedure was first to compute the steady flow 

field using the computer  program RAXBOD. The values of  0o in each node and other 

required information were stored; then all the coefficients for the algebraic equation and 

the perturbed boundary conditions for a given oscillatory motion were computed. Finally, 
a simultaneous solution of  the algebraic equations gave the values of Ol R and 011 at 

every nodal point. All perturbed flow quantities could now be obtained by differencing 
the 0o, 01R, and 011 values. 

Regarding the selection of  the nodal distribution to give good resolution, two sets 
of  97 x 33 and 97 x 97 were frequently used for the steady part calculation. For the 

perturbed unsteady part, four nodal distributions were tried (i.e., 25 x 9, 49 x 17, 97 

x 17, and 97 x 33). The results obtained from 25 x 9 were not satisfactory in many 

cases, particularly at a supersonic free-stream velocity. The results obtained from the 49 

x 17, 97 x 17, and 97 x 33 matrices have good agreement in many cases. The required 

computer  time is about 1-1/2 rain. for 49 x 17, 4 rain. for 97 x 17, and 30 min. for 

97 x 33'. It was decided that the nodal distribution of  97 x 17 was sufficiently good 

from the standpoints both of  accuracy and economy. Therefore, most results presented 
in this report are obtained using 97 x 17 nodes. 

4.2 PULSATILE OSCILLATION 

A body of  revolution undergoing oscillatory, pulsatfle motion of  the surface is a 
fundamental axisymmetric, unsteady motion. For the perturbation method developed in 

this report, the pulsatile oscillation can also provide a direct comparison between the 
quasi-steady solution of  the linear perturbed equation (Eq. (7)) and the steady-state solution 

of  the nonlinear equation (identical to Eq. (5)) for the same body geometry. The case 
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of  a hemisphere-cylinder was chosen for comparison. The magnitude of  the pulsatile 

oscillation is assumed to be proportional to 0.1 r, where r is the local radius of  the body. 
As shown in Fig. 4, the expanded (Rt = 1.1) and the shrunken (Rt = 0.9) bodies are 

an ellipsv-cylinder with nose axis ratios of  1.1 and 0.9, respectively. The steady-state 

solution for the surface pressure shown in solid curves in Figs. 4 ( M  = 0.6) and 5 (M, 
= 1.2) for the ellipse-cylinders was obtained directly from the computer  program RAXBOD. 

The quasi-steady solution for the same eUipse-cylinders can be obtained by adding (for 

Rt = 1.1) or subtracting (for Rt = 0.9) the perturbed pressure from the mean steady-state 

surface pressure for a hemisphere-cylinder (Rt = 1.0). The quasi-steady solutions, as shown 

by broken curves in Figs. 4 and 5, arc seen to agree well with the steady-state solution. 

L2 ' ' I 
I N -0.6 

- - -  Quas i -Steady ,  k ° 0 ~ -  ~ - ~ . ~ - -  

0.4 
~ RtlR 

1.1 
Cp L 0 

-0.4 

-0. 

-l. 2 0 ' ' ' ! 2 3 
ZIR 

Figure 4. Quasi-steady surface pressure perturbation for 
hemispherecylinder at M = 0.6. 

4.3 P I T C H I N G  O S C I L L A T I O N  

Calculations for a pitching oscillation were performed for five body configurations: 

(a) 4-caliber ogive-nose-cylinder with £/R = 20; (b) 2-caliber ogive-nose-cylinder with £/R 
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Cp 

1.2 

0.8 

0.4 

 -l.z 
Rt/R 
L 1 - -  Steady 
1.0 ---Quasi-Steady, k - 0 

~ m  

-0.4 

1.1' 
I i I -0"80 1 2 3 

ZIR 

Figure 5. Quasi-steady surface pressure perturbation for 
hemisphere-cylinder at M = 1.2. 

= 14; (c) 2:1 ellipse-nose-cylinder with ~/R = 20; (d) hemisphere-cylinder with ~/R = 
14; and (e) parabolic arc nose with ~/R = 5. The quasi-steady (k = 0) solutions for the 
surface pressure will be compared to steady experimental data for configurations a, c, 

and d at zero and nonzero incidence. The quasi-steady aerodynamic coefficients and the 
nonsteady damping-in-pitch coefficients will be compared to experimental data and 
available theory for configurations b, d, and e. 

4.3.1 Quasi3teady Perturbation Pressure 

4.3.1.1 The 4-Caliber Ogive-Nose-Cylinder 

In Fig. 6, the steady-state solution for surface pressure (M. = 0.8 to 1.1) for the 

4-caliber-ogive-nose-cylinder compares satisfactorily with the experimental data (Ref. 8) at 
zero incidence. Thus, the steady-part solution, which was used as the input for the unsteady 

part calculation, is valid. The quasi-steady solution for the perturbed surface 
pressure is shown in Fig. 7 for the leeward plane of symmetry (aU discussion in this 
report is referred to the leeward plane of symmetry). Since the perturbed flow field is 
linear with respect to the incidence, the magnitude of  ACp-----/a is plotted. In Ref. 8, two 
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0.3 

0.2 

4-Caliber 0give Nose 
Theory 

i i | | | | i 

nl  

o 

4tl 

.-0.2 

0,3 . . . . . . .  

Cp 0,1 

0 
-(12 

-0.~ 
0 2 4 6 8 10 12 14 16 0 

ZIR ZIR 

Figure 6. Comparison of steady-state surface pressure between theory 
and experiments for a 4.caliber ogive-nose~ylinder. 
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ZIR 
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~ Q g  
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ZIR 

Figure 7. Comparison of quasi~teady perturbed surface 
pressure between theory and experiments for a 
4-caliber ogive-nose-cylinder. 
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sets of  experimental data were obtained for ¢ = -+4 and +8 deg. To obtain the average 

perturbed pressure slope for comparison, the following formula was used.: 

Ac---~ _ (Cpa-C _a)  (32) 
a 2a 

Figure 7 shows that the agreement between theory and experiment is excellent. That the 

data for a = +8 and +4 deg agree well, except at M. = 1.1, indicates the linearity of 
the perturbed flow up to 8 deg. 

4.3.1.2 The 2:1 Ellipse-Nose-Cylinder 

In Fig. 8, the steady-state solutions for surface pressure (Moo = 0.6 to 1.2) for the 
2:1 ellipse-nose-cylinder again compare satisfactorily with the experimental data (Ref. 8) 

C I) 

1.4 L L2 

LO 

O.8 
0.6. 

- -  Xhem'y ~1.']  Ellipse Nose~ .LR o Exp 

ZIR 

Figure 8. Comparison of steady-state surface pressure 
between theory and experiments for a 2:1 
ellipse-nose-cylinder. 
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at zero incidence. At incidence, the experimental data were obtained for M. = 0.9 to 

1.2 and n = +8 deg only. The comparison between the quasi-steady theory and experiments 

for the average perturbed surface pressure is given in Fig. 9a. The agreement is generally 

good. However, the theoretical data show a spike and dip for M. = 0.9 and a hump 

for M. _> 1.0 aft of the juncture of the ellipse and the cylinder. These phenomena are 
not shown by the experimental data. The cause may be attributed to the discontinuity 
in the curvature of the body geometry in the inviscid calculation of the perturbed flow 
field. In order to show the effect of  curvature discontinuity, plots of  the experimental 

0 

-2 

MOo - 0.9 

0 

o 

4.31 

2:lEIlipse Nose 
Theory --  .I-e exp o (a " 8 degI"~ 

0 

~ t  M°~" 1.2 o 

C 

6 0 l 2 ] 4 5 6 
Z/R ZIR 

a. Average perturbed surface pressure 
Figure 9. Comparison of quasi-steady perturbed surface 

pressure between theory and experiments for a 2:1 
ellipse-nose-cylinder. 

leeward side perturbation pressure (Cp~=8, - Cp~=0 ) and windward side perturbation 
pressure (Cpa=0 - Cp~=a. ) are presented in Fi~ 9b. Interestingly enough, the experimental 
data for the windward side do show the expected type of peak and dip for M® = 0.9 

and the expected hump for M _> 1.0 approximately in the locations given by the theory, 
but to a far lesser degree than indicated. The experimental data in the leeward side behave 
in a significantly different manner from those of  the windward side in 2 < z/R < 2.5 

for M. from 0.9 to 1.1, indicating the effect of viscosity and hence the deviation from 
the assumption of a cos ~ flow field at a = 8 deg. 
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b. Windward and leeward side perturbed surface pressure 
Figure 9. Concluded. 

4 .3 .1 .3  The Hemisphere-Cylinder 

The third configuration used for surface pressure comparison is a hemisphere-cylinder. 

A good agreement in the surface pressure between theory and experiment at zero incidence 

when there is no flow separation has been shown in Ref. 9, but flow separation does 

occur at M® = 0.7 to 0.9 at zero incidence. To evaluate the quasi-steady theory at incidence, 

the Ref. 9 experimental data for hemisphere-cylinders at a = + $ dog were used. (In Ref. 

9, ~ = 0 and 180 deg. which corresponds to a = 5 and -5 deg, used herein.) In Fig. 

10, the leeward and windward side perturbation pressures arc compared between theory 

and experiment for M= = 0.6, 0.7, 0.8, 0.9, 1.0, and 1.2. In Fig. l l ,  the shadowgraphs 

of  the flow field at a = 5 deg are shown. At M = 0.6, Fig. I I  shows that the flow 
is attached except for a possible minor separation near the juncture o f  the hemisphere 

and the cylinder. This separation is also indicated by the experimental data of  the 

perturbation pressure on the leeward and windward sides. The theory seems to sl/ghfly 
overpredict the perturbation pressure. For M = 0.7 to 0.9, Fig. I l shows that the leeward 

flow separates. On the windward side, a small shock system is indicated for b i  = 0.7; 
for M, = 0.8, the shock system resembles the case of  a = 0, which indicates the existence 
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of a separation bubble (see Ref. 9). For M** = 0.9, an embedded normal shock is shown. 
For the described flow field, one would not expect good agreement between the theory 
and the experiments because of viscous effects. As shown in Fig. 10, the agreement is 

o a = -5 deg (Windward Side) 
Theory - -  Exp o~ a - 5 deg (Leeward Side) 

-0.2 

' ' I 

Moo - 0.6 

I I 

0.2 

0 

-0.2 

- 0 . 4  

-0.6 

p _ ~ o n  of Minor Flow Separation on Leeward Side - -  

Location for Leeward Side 
¢ r  

o <~ MO) " 0"7 

P" Small Shock on Windward Side 
, Also Shock Position at a - 0 

0.6 

0.4  

0.2 

0 

-0.2 

- 0 . 4  

- 0 . 6  

i 

L.~ow separation on Leeward Side 

1. 05 L Region of Separated Flow and 
Shock at - 0 System a 

I i/o 
/ V / -  Region of Flow Separation and Shock 

I . ~  System on Windward Side 

I I I I 

0 1 2 3 4 
ZIR 

Figure 10. Comparison of quasi-steady perturbed surface 
pressure between theory and experiments for  a 
hemisphere-cylinder. 
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poor for these cases just discussed. It is noted that there are spikes in the theoretical 

curves for M® = 0.7 to 0.9 at the region near the zero incidence shock location. The 

calculated values at the spikes are unrealistic because of  the large gradients in the flow 

quantities near the shock (see Section 4.3.4 for modification). For M, = 1.0 and 1.2, 

Fig. 11 shows that the flow is again well attached, which is also indicated by the 

experimental data shown in Fi~ I0. Thus, for M = 1.0 and above, the comparison between 

theory and experiments is good except for the hump resulting from the curvature 

discontinuity aft of  the junction of  the hemisphere and the cylinder, where the theory 
shows a larger value again. 

ACp 
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0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

o a : -P deg (Windward Side) Theory Exp m o- a 5 deg (Leeward Side) 

d d d ~ ~  i 

~o ~ o o /i..~- Experimental Shock Locati~ n 
• ~,..,," o ~  i l l  o onWindwardSide 
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-1. 31 
I I I I 
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8" 

I ' ' | ' Qr  

-0.2 
/ I I I I 

0.2 I 

M w - 1.2 
-0.2 

I I 
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Figure 10. Concluded. 
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Moo" 0.9 

Moo • 0.7 
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(~) Flow Separation 
( ~  Embedded Shock System 
(~ Embedded Normal Shock 
(~) Rocompresslon Shock 
(~ Intersection of Shock and Tunnel Side Walls 
( ~  Bow Shock 
(~) Disturbances Reflected from Wall Due to Bow Shock 

Figure 11. Shadowgraphs of hemisphere-cylinder at 5 deg. 

4.3.2 Shock Excursion at Incidence 

The surface pressure obtained by the perturbation theory and the experimental data 

are presented in Fig. 12 for the ellipse-cylinder at M** = 0.9 and a = 0 and +8 deg (no 

serious flow separation occurs on the leeward side of  this case). At a = 0 the shock 

occurs at approximately Z/R = 2.3, where the pressure increases sharply. It is noted that 

the experimental data for a = + 8 deg cross over the data for a = O. This is an indication 

of the moving of the shock as the body pitches to an angle. For example, if the body 

is at positive incidence (leeward side), the shock will move forward from 0 to 1 as shown 

in the sketch in Fig. 12. The surface pressure in between the points 0 and 1 will increase 

due to the forward moving of the shock, whereas upstream of 1 the pressure will decrease 
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Figure 12. Comparison of surface pressure between theory and 
experiments for a 2:1 ellipse-nose-cylinder at 
incidence and M® = 0.9. 

due to the incidence. For negative incidence (windward side) the shock moves to 2; then 

the pressure upstream of  0 increases, but the pressure in between 0 and 2 should decrease 

due to the aft movement of the shock from 0 to 2. Thus, when the data at incidence 

cross over at zero incidence, this point of  crossover may be interpreted as the location 

of  the shock at incidence. The excursion of  the shock as read by this method is shown 

in Fig. 12. Since the distance between points l and 2 is about 0.2R and covers a total 

incidence of  16 dog, the shock excursion is relatively small for bodies o f  revolution as 

compared to a 2-D airfoil for which a 10-percent chord length excursion over a few degrees 

of  incidence is common. In addition, the theoretical result shows a point  of  crossover 

in the surface pressure near the middle of points 1 and 2 and has the same trend as 

shown by the experimental data. Therefore, the presumed fixed shock location in the 

development of  the perturbation theory for bodies or revolution is not a serious deficiency 

when the shock is not too strong. If, however, the normal shock is strong (for increasing 

bluntness of  the nose), as for the case of  a hemisphere-cylinder, the flow in the lceward 

side is generally separated, and the inviscid calculation is invalidated. For the windward 
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side, however, the shock excursion is not large (about 0.2R), as shown in Fig. 10 for 

M. = 0.9. 

4.3.3 Quasi-Steady Aerodynamic Coefficients 

The integrated aerodynamic coefficients for the 2-caliber ogive-nose-cylinder and the 

hemisphere-cylinder are shown in Figs. 13 and 14, respectively. The experimental force 

data were obtained from Refs. 9 and 10. The theoretical value o f  CA,F is the same as 
at a = 0 and is generally lower than the experiments. However, experimental force data 

• J IR - ]2 
Force Dat~ Ref. 10 • / , /R - 20 

Theory 
- -  I nviscid, J~/R - 14 
- - -  Viscous Effect Added 

, i  ' 
XN, p/2R ~ • • 

1 
2 e  • 

I I | I 

• ,,L • 

O i I I 

O. 4 , l , 

CA, F" 

0.2 - / /  

, 

0.6  0 .8  1.0 1.2 
% 

| 

1.4 1.6 

Figure 13. Comparison of static stability derivatives 
between theory and experiments for a 2-caliber 
ogive-nose-cylinder. 
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Figure 14.  Comparison of static stabil i ty derivatives 
between theory and experiments for a 
hemisphere-cylinder. 

for the shorter body and the integration of surface pressure measurements for the 
hemisphere-cylinder (Fig. 14) do show better agreement with the theory. This indicates 
that the difference is due to the skin friction, which was not accounted for in the theory. 
When the viscous effect is added, using a skin friction corresponding to the experimental 
Reynolds number for the long body only, the agreement between theory and experiments 
for CA,F is excellent. The CN a value is nearly independent of the body length and is 
shown to be in good agreement with the theory for the ogive-cylinder. For the 
hemisphere-cylinder, the hump and dip in the CN a data, given by the theory as between 
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Mach numbers from 0.6 to 0.9, were not shown by the experimental data; but for M. 

>__ 0.9 the agreement is again good. The aerodynamic moment center (neutral point) 

measured from the body midpoint (positive forward) is compared between theory and 

experiments in Figs. 13 and 14; the agreements are only fairly good. 

4.3,4 Modification at the Region of Embedded Shock 

As described in Section 4.3.1, unrealistic spike was found at the region of embedded 
shock. South and Jameson used the criterion of minimum Laplacian (,V.2Oo) to define 
the location of shock and smooth the flow field immediately upstream and downstream 
of the shock by one-sided extrapolation. In this section, the same one-sided extrapolation 
at the embedded shock is used for the quasi-steady flow solution, and the effect of the 
embedded shock on the solution of the perturbed flow field is examined. The cases 
examined are the 2:1 ellipse-nose-cylinder at M = 0.9 and the hemisphere-cylinder at 

M. = 0.7, 0.8, and 0.9. Significant changes are found in the pressure distribution near 

the embedded shock, as the following paragraph describes. 

Theoretical results with and without modification are shown in Fig. 15 by solid and 
dashed curves, respectively. For the ellipse-nose-cylinder (Fig. 15a), the spike value is 
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Figure 15. 
a. Ellipse-cylinder, M® = 0.9 

Comparison of theoretical results with and without 
modification and experimental data. 
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b. Hemisphere-cylinder 
Figure 15. Concluded. 

reduced from -4.31 to -1.8, approximately, and in the downstream of the shock, the 
perturbed pressure does not become positive, as shown by the previous result and the 

experimental data. Now, the theoretical result for M = 0.9 looks just like the other cases 

for M _> 1.0. For the hemisphere-cylinder at M = 0.7, Fig. 15b, the spike value reduces 

from -0.84 to -0.4. The new results of surface pressure change significantly after 
modification at M.. = 0.8 and 0.9. At M = 0.8, the spike value of ACp reduces from 

1.05 to 0.2 and then monotomically approaches zero without the second spike in the 
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-ACp side; and at M = 0.9, the spike at the -ACp side disappears entirely while the 

positive side reduces from 0.64 to 0.24. The comparison between theory (after 
modification) and experiment is fair in the windward side except at M** = 0.8 where flow 
separation prevails even at the windward side. From the above comparison, it is clear 
that the perturbed surface pressure obtained with modification at the embedded shock 

provides better solution. It should be pointed out that, although the present results differ 
significantly from the previous 'results in surface pressure distribution, the integrated 

aerodynamic coefficients change only slightly. Hence, the results reported in Section 4.3.3 
remain unchanged. 

4.3.5 Comparison with Nonlinear Theory 

lnviscid nonlinear computations made by solving the Euler's equations are available 
for a hemisphere-cylinder at a = 5 deg and M** = 1.2 (Ref. 9) and M** = 0.9 (Ref. 11). 

In Fig. 16a, the perturbed surface pressure distributions are compared between the 
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Figure 16. 
a. Quasi-steady perturbation pressure 
Comparison of perturbation theory with nonlinear 
(Euler's equations) theory for a hemisphere-cylinder 
at a = 5 deg and M® = 0.9 and 1.2. 

31 



AE DC-TR-77-100 

nonlinear theory and the present method.  Since in Ref. 11 only the Cp values at ~ = 

0 deg, 90 deg, and 180 deg were given, the Cp values at ~ = 90 deg were used to replace 
Cp values at a = 0 to obtain the perturbed surface pressure. That is, 

Windward side ACp =. Cp0ffi 180 ° - Cp0=90o 

Leeward side ACp = C p,~ = 90 o - C PO = 0 

The ACp curves between present calculation and the nonlinear theory agree well in the 

trend. It is also noted that at a = 5 deg the assumption of  cos ~ variation of  flow variables 

in the present theory is perhaps invalid at the nose for M = 1.2 and at 1.5 < z/R < 
3,0 for M = 0.9. 

1.2 

0.6 

Cp 0 

-0.6 

-1.2 

1.2 

0._6 

Cp 0 

-0.6 

Mm- 0.9 

qJ - Q, Leeward Side 

, /  * 

. 

M m 1.2 

0 1 2 3 4 
Z/R 

--- Present - -  Non-Linear Theory . Experiment 

~ ' ~  . " 

I i | 

0 1 2 3 4 
Z/R 

~ I, qJ'- 180 W'indwardSide 

| I i 

0 1 2 3 4 
Z/R 

b. Quasi-steady pressure 
Figure 16. Concluded.  

A plot of  the total pressure Cp for a hemisphere-cylinder at a = 5 deg and ~ = 

0, 90, and 180 deg is shown in Fig. 16b for M = 0.9 and 1.2. The agreement between 

present theory and the nonlinear theory is good except near the embedded shock region 

for M = 0.9 and aft of  the juncture of  the hemisphere and the cylinder for M. = 1.2. 
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The experimental data at ~ = 0 and 90 deg for M** = 0.9 clearly show that the flow 

is separated in these two meridian planes. 

4.3.6 Unsteady Calculation 

Unsteady calculations were first performed for a parabolic arc nose at a reduced 

frequency of  k = 0.006 and M.. = 1.0. This case was computed by Liu and Rue (Refs. 

2 and 12) by extending the parabolic method of  Oswatisch and Keune (Ref. 13). The 

comparison of  the stability derivatives of the total damping-in-pitch from the present theory 

and the theory of  Liu and Rue as well as the linearized theory of  Landald (Fig. 12 of  

Ref. 12) is shown in Fig. 17 for a variation in pitch center. The agreement between the 

o ~  E ¢.1 
.p 

E ¢J 

-4, 

-3 

-2 

-1 

\ \  

\ 
\ 

\', 
\ 

Me0 - 1.0, k - 0.0~ 

Landahl 
Uu and Rue 
Present 

\ 
\ 

\ 

~ %  %%% ~.... 

0 ~ m l  
0 0.2 0.4 0.6 0.8 1.0 

dt 

Figure 17. Comparison of theoretical stability derivatives 
for a parabolic arc nose. 
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Figure 17. Concluded. 

present theory and that of Liu and Ruo is good except for dt -~ 0, where the present 
theory gives a lower value. It should be noted that Landahl's linearized theory is invalid 
for such a low reduced frequency. Liu's theory indicates a reduction of the total 
damping-in-pitch coefficient when the nonlinearity of the differential equation is 
approximately accounted for. The present theory indicates that if the nonlinearity is fully 
accounted for, the total damping-in-pitch coefficient is even lower. No experimental data 
are available for comparison. Other stability derivatives such as CN,: + CNq, CN~, and 
Cm a calculated by the present method as a function of  dt are also shown in Fig. 17. 
Again, no data are available for comparison for these quantities. 

No transonic unsteady surface pressure measurements for a body of revolution have 

been reported in the literature. Therefore, a comparison of the unsteady surface pressure 
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is not available. However, a stability derivative for total damping-in-pitch, Cm ~ + Cmq, 

has been reported in Refs. 14 and 15 for a 2-caliber ogive-nose-cylinder and a 

hemisphere-cylinder. In these measurements, the models were pitched at a constant 

frequency of 36 Hz; hence the reduced frequency changes with the free-stream Mach 

number as follows: 

M = 0.6 0.7 0.8 0.9 1.0 1.1 1.2 

k = 0.0165 0.014.5 0.0124 0.0112 0.0099 0.0095 0.0088 

Calculations were made using the corresponding reduced frequency for each Mach number. 
Figure 18 shows the stability derivatives for total damping-in-pitch for the ogive-cylinder. 

The Cm ~ + Cmq value given by the theory is generally higher than the experimental 
data, particularly for the lower Mach number. No data are available for comparison for 

CN,~ + CNq. 

Theory ~ - -  - - x - -  - ]TR 
0 F.xp I " - - -  'dt/R " 7 

100 

80 

O 
O °I 

O 

E 
÷ 

E 
"r 

O 

4" 

I I I I 

~8 "I.0 1.2 ~6 ~8 LO 1.2 

Figure 18. Comparison of dynamic stability derivatives between 
theory and experiments for a 2~caliber ogive-nose-cylinder. 

For the hemisphere-cylinder, the comparison between theory and experiments is 
shown in Fig. 19 for two pitch centers. The experimental data for dt/R = 7 were obtained 

from Ref. 13 for the full span model; data for dt/R = 5 and 6 are from Ref. 14. The 
agreement between theory and experiment is fair. The theoretical c',dculations were made 
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for M® = 0.6, 0.7, 0.8, 0.9, 1.0, and 1.2 to determine the curves, which at first look 

do not show the trend given by the experimental data for dt/R = 5 and 7. However, 

the experiments for dt/R = 7 gave a positive value of Cm,i + Cmq (unstable) at M = 
0.9, which was not predicted by the theory, and the set of data for dt/R = 5 also indicate 

a drop of Cm i + Cmq at M= = 1.4. When these characteristics of the experimental data 
are considered, the theoretical curves do not seem unreasonable. In addition, the 

experimental data for the dt/R = 6 set behaved differently from the other sets. Hence, 
perhaps one needs more experimental data in the Mach number range shown in Fig. 19 

in order to fully evaluate the theoretical results. As pointed out previously, for a 

hemisphere-cylinder in the transonic flow regime, the flow field is complicated by the 
viscous and inviscid interaction. Therefore, inviscid theory may not be sufficient to predict 
the dynamic stability derivatives. Theoretical values for CN~ + CNq are also plotted in 
Fig. 19. 
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Figure 19. Comparison of dynamic stability derivatives between 
theory and experiments for a hemisphere-cylinder. 
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5.0 CONCLUDING REMARKS 

A perturbation theory and numerical solution, based on the unsteady full potential 
equation, were developed for unsteady transonic flow about blunt and pointed bodies 
of revolution undergoing harmonic oscillations. The oscillatory motion was considered to 
be a small perturbation of the nonlinear steady flow. The coupled equations for the steady 
and unsteady potentials were solved numerically using a rotating difference scheme. 
Calculations were performed for ogive-cylinder, ellipse-cylinder, hemisphere-cylinder, and 
parabolic axe nose shapes undergoing pulsatile and pitching oscillations. Comparisons of 
the present theory with available experiments and other theories are presented for the 
surface pressure distribution at quasi-steady state and for the static and dynamic stability 
derivatives. The agreement is good for the quasi-steady cases. 
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APPENDIX A 
DIFFERENCE FORM OF TERMS IN EQ. (18) 

The difference form of  each term involved in arriving at Eqs. (20), (21), and (22) is 
given below. 

I. For the 02/aS 2 term 

A. I f ( l  - q2o/ao2) > 0 

i+l ,j - ~ I R , , j )  

(~) i~1__.j (~IRt,J - ~IRi-l,j)l 
2 

+ Q I /VoUo~ (~) gj [~IR - ~]R 

gi 

-- (~ ] ]~ iq- I ,j-{-I R i--1,j-b I . ~  .. 
\ o/~,j  

I g i - I  C~IRi . ,_I-  ~ I R i , j ) -  qj+21-.. (~IRi, j - ~IRk,,+l) 1 

~l~)lRi_l,j..1 + ~2~lRi,j_1 + ~3(~lRz+l,j._l 

+ ~6~)11l 1 j "~ ~7~llt~l,j+ 1 + ~s~IR~.j . . 

+ ~9~IBi+l,i+l 

+ ~4 (~IRi+l,j 

+ ~8(~  1 l~ i , j+  1 

(A-l) 

where 

~I = -~s = -~7 = ~9 = - a 2  Q 

~2 = a3 qj-~ Q 
2 
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o 
i- l__,j 

2 

t-.L ,j 
2 

_ ,  + 
- ~ - , J  

2 

/3 8 = a 3 gj + 1__ Q 
2 

al = l_L_ (L'2o~ 

0.2 - , /VoU.~  (~[) qJ 

q2 
~ =  ~ \o/,.~ 

where the terms AT and A~" are the mesh spacing in the computational plane, Fig. 2. The 

terms f and g are the stretching function in the s and n directions. The expression H is 
defined in Fig. 1, and the terms i and j are the grid points along the s and n directions, 
respectively. 

n. If (l - qo 2/a2o) < 0 

1. When Vo > 0 

i--~,j 

2 
i--l,j - &IR i_2.j) 1 

Q [2VoVo~ 

2 2 
SJ'I'~ I ~ ] R i . j  -- ~]Ri....l,j 
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where  

+__Q_. 
A~ 2 

= yj.dla 
l--2,j 

- . + qSlt 1 [ ~1 tl i,j+ 1 i-1 ,j+] 
--I 

.J 

(:,o) I ,,, sj+l j+½ 

- + Y4~I + Y2~I Ri_l.  j }'3 '~1R ,j R ~_1 ,j+ 1 

+ Y'6 ~1R + YS~l  lti,j+l i.j+2 (A-2)  

i--I :+1 i._8., j+ 1__ 
T '~ ~ 2 2..I 

+ b 2 + b 3 g j + l l Q  

Y4 = b2Q 

Y6 = b3 g j -  3 Q 
2 

At2 • ~1 ,j 
~ t  O f  191 

b2 = 1 (2UoVo.~ 

2 2 

gj+~ 
2 

b 3 _- 1 AU ~ sj+1 \ 
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2. When Vo < 0 or on the boundary,  j = J (see Fig. 3) 

'- + Y~ ~1 + Ys 01a 
Q ln s s  j,j Yl ~lR~..2, j Rt_x 4 t,j 

+ 3/4 ~lRi-l,j.-1 -e Y5 g b l R i , j _ l  - Y6 ~blRi,i_ 2 

where 

Yl  = YI 

~---~, [(~)+(~) ]o- ~o 
x_l ~--1 i.-3 :_1 

~"-T ~ "  ~J 

yl = b~O 

2 

})3 A~-2 ~q2o/i.j 

II. For the ~32/0N 2 term 

This term is independent  of  the local flow condit ion,  or 

2 

(A-3) 
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where 

2ArA~ ~ ( H  1 R k qo ] i . j  t,j i+l,j--I R i - l , j - I  

- + ~IR ) ~ l R i + l , j + l  ~ l , j+ l .  

, _ _ ,  ,, 
A~ \dL.j i,j-'- l -- ~ l R i , j )  

-'j-F~ (~]R j- ~IR j_l) 1 

= a I ~ i R ~ l , ~  1 - R i , ] _  1 + a 3 ~ ] R i + l , j _  1 

+ a5 ~ ] R  . + a6 ~1 + a7 ~ I R  + a4 '~]l |~+l,j  i,] R~-l , j  i-l,yl-1 

+ a9 ~ I  + a 8 ~ lR i , j+  1 Ri+l , j+l  (A-4) 

a I = - a  3 = - a  7 = a 9 = a 2 

a 2  = a 3  gi,j-1 
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,,_, 
q2 g~ ..x~ \ o/,., 

I 

The rest of the terms in Eq. (18) may be written as follows: 

C4 (~,~1II ((~ _ (~]Ri_l,j) 5- " a~ - C~ IRi+l. j 

C5 0~111 (~1 - ~IRz, j+I)  

H 0s ~+1 ,.1 i--I ,j 

Ca 61a = C 8 61a.  
1.)  

(A-5) 

(A-6) 

(A-7) 

(A-8) 

(A-9) 
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a 

ai,bi,ci 

B 

CA ,F 

CN a'Cm a 

NOMENCLATURE 

Speed of sound 

Coefficients 

Coefficients 

Equation for the boundary, Eq. (12) 

Forebody axial-force coefficient, FA/q 

Stability derivative caused by angle of attack 

CNh + Csq, Stability derivative caused by total damping-in-pitch 

Cm h + Cmq 

Cp 

ACp 

ACp 

dt 

FA 

H 

ho 

I, J 

K 

k 

M 

n,s 

Pressure coefficient, (p - p**)/q 

Perturbed pressure coefficient, Pl/q 

Average perturbed pressure coefficient, Eq. (37) 

Pitching center from the nosetip 

Axial force on forebody 

(1 - n ds/d0) 

Amplitude of harmonically heaving oscillation 

Maximum grid index along the s and n directions, 

respectively 

Curvature of body meridian plane, -d0/ds , 

Reduced frequency, coR/U** 

Total length of the body 

Mach number 

Body normal and tangent coordinates 
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nl 

p 

Ap 

Q 

q 

q 

R. 

Rt 

r,z 

t 

U,V,W 

x,Y,Z : 

XN ,p 

aiSi,Ti 

7 

60 

0 

# 

P 

¢o 

Perturbed body boundary due to motion 

Pressure 

Perturbed pressure 

(1 - qo~/~) 

Dynamic pressure, 1/2 p..O~ 

Velocity vector 

Radius of the cylindrical body 

Radius of the expanded or shrunken cylindrical body 

Radial and axial coordinates 

Time 

Axial, vertical, and circumferential velocity components, .respectively 

Cartesian coordinates 

Aerodynamic moment cen.ter or neutral point of pitching moment, positive 

forward ~f body mid-point, (CMa/Cna)mid.point 

Angle of attack 

Coefficients 

Gas constant 

Amplitude of harmonically pulsatile oscillation 

Computational coordinates 

Slope of body geometry in the meridian plane 

Dynamic viscosity of the fluid 

Density of the fluid 

Amplitude of harmonically pitching oscillation 
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0,1 

ij  

I,R 
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Velocity potential 

Circumferential angle starting from lee-side plane of symmetry 

Oscillation frequency, cycle/see 

Steady and perturbed unsteady components, respectively 

Index along the body and normal coordinates, respectively 

Imaginary and real parts, respectively 

Free stream 
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